Cari Blog

Rabu, 03 Februari 2021

Minggu, 20 Februari 2011

Periode dan Frekuensi Getaran

Periode Getaran

\!T=\frac{t}{n}


Dengan ketentuan:

* \!T = Periode (sekon)
* \!t = Waktu (sekon)
* \!n = Jumlah getaran

[sunting] Frekuensi Getaran

\!f=\frac{n}{t}


Dengan ketentuan:

* \!f = Frekuensi (Hz)
* \!n = Jumlah getaran
* \!t = Waktu (sekon)


[sunting] Periode Getaran

\!T=\frac{1}{f}


Dengan ketentuan:

* \!T = periode getaran (sekon)
* \!f = frekuensi (Hz)

[sunting] Hubungan antara Periode dan Frekuensi Getaran

Terdapat 2 rumus, yaitu:

* \!T=\frac{1}{f}

* \!f=\frac{1}{T}

Dengan ketentuan:

* \!T = periode (sekon)
* \!f = frekuensi (Hz)

GELOMBANG

Pengertian dan Jenis-jenis Gelombang

* Tuesday Nov 18,2008 07:44 PM
* By san
* In Gelombang Mekanik

Pengantar

Pernahkah anda bermain ke pantai ? wah… kalau yang tinggal di daerah yang jauh dari pantai kayanya belum neh… :) suatu pemandangan indah ketika kita berada di pantai adalah gulungan gelombang laut yang datang dari tengah dan akhirnya pecah di tepi pantai… indah sekali, apalagi ketika kita berada di pantai kuta, Bali…. Gelombang laut merupakan salah satu contoh gelombang yang sering kita temui dalam kehidupan sehari-hari. Selain gelombang laut, masih terdapat banyak contoh lainnya. Ketika anda melempar sebuah batu kecil pada permukaan air yang tenang, akan muncul gelombang yang berbentuk lingkaran dan bergerak ke luar. Contoh lain adalah gelombang yang merambat sepanjang tali yang terentang lurus, ketika kita menggerakan tali naik turun. Btw, sebenarnya gelombang itu apa ? terus apa yang menjadi penyebab adanya gelombang ?

Ketika kita berbicara mengenai gelombang, kita tidak bisa mengabaikan getaran. Getaran dan gelombang mempunyai hubungan yang erat sekali. Pokok bahasan getaran telah anda pelajari di kelas XI, mudah-mudahan anda belum melupakannya. Sebaiknya klik link di atas dan segera meluncur ke TKP untuk mempelajarinya lagi, seandainya dirimu telah melupakannya. Kali ini gurumuda mencoba menyinggung kembali apa itu getaran (Cuma intisarinya) dan bagaimana kaitannya dengan gelombang.

Getaran alias osilasi merupakan gerak bolak balik suatu partikel secara periodik di sekitar titik kesetimbangannya (jangan pake hafal.. pahami saja). Terdapat dua contoh umum getaran yang kita temui dalam kehidupan sehari-hari, yakni getaran benda pada pegas dan getaran benda pada ayunan sederhana (contoh getaran benda pada ayunan sederhana adalah getaran bandul).

Getaran yang terjadi pada suatu benda disebabkan oleh adanya gangguan yang diberikan pada benda tersebut. Untuk kasus getaran bandul dan getaran benda pada pegas, gangguan tersebut disebabkan oleh adanya gaya luar (dalam hal ini kita yang menggerakan bandul atau benda pada pegas). Sebenarnya terdapat banyak contoh getaran yang dapat kita jumpai dalam kehidupan sehari-hari. Garputala bergetar ketika kita memberikan gangguan dengan cara memukul garputala tersebut. Kendaraan akan bergetar ketika mesinnya dinyalakan, dalam hal ini kendaraan tersebut diberi gangguan. Suara yang kita ucapkan tidak akan terdengar apabila pita suara kita tidak bergetar. Seindah apapun alunan musik, jika loudspeaker yang berfungsi sebagai sumber bunyi dan gendang telinga kita sebagai penerima tidak bergetar, maka dapat dipastikan kita tidak akan pernah mendengar musik tersebut.

Setiap gangguan yang diberikan kepada suatu benda akan menimbulkan getaran pada benda tersebut dan getaran ini akan merambat dari suatu tempat ke tampat lain melalui suatu medium tertentu (medium = perantara). Dalam hal ini, peristiwa perambatan getaran dari suatu tempat ke tempat lain melalui suatu medium tertentu disebut gelombang. Dengan kata lain, gelombang merupakan getaran yang merambat dan getaran sendiri merupakan sumber gelombang.

Ketika kita melempar batu ke dalam genangan air yang tenang, gangguan yang kita berikan menyebabkan partikel air bergetar alias berosilasi terhadap titik setimbangnya. Perambatan getaran pada air menyebabkan adanya gelombang pada genangan air tadi. Jika kita menggetarkan ujung tali yang terentang maka gelombang akan merambat sepanjang tali tersebut. Gelombang tali dan gelombang air adalah dua contoh umum gelombang yang dengan mudah kita saksikan dalam kehidupan sehari-hari.

Perlu anda ketahui bahwa ketika melihat gelombang pada genangan air, seolah-olah tampak bahwa gelombang tersebut membawa air keluar dari pusat lingkaran. Atau ketika menyaksikan gelombang laut bergerak ke pantai, mungkin anda berpikir bahwa gelombang membawa air laut menuju ke pantai. Kenyataannya bukan seperti itu. Sebenarnya yang anda saksikan adalah setiap partikel air tersebut berosilasi (bergerak naik turun) terhadap titik setimbangnya. Agar lebih memahami penjelasan gurumuda, alangkah baiknya jika dirimu melakukan percobaan kecil-kecilan. Coba letakan benda yang bisa terapung di atas air yang bergelombang. Dirimu akan mengamati benda tersebut bergerak naik turun pada tempat yang sama. Hal ini menujukkan bahwa gelombang tidak memindahkan air tersebut. Kalau gelombang memindahkan air, maka benda yang terapung juga ikut bepindah. Jadi air hanya berfungsi sebagai medium bagi gelombang untuk merambat. Paham khan ?

Oya, apakah dirimu pernah mandi di laut ? yang gurumuda maksudkan adalah ketika air laut sedang bergelombang. Seandainya pernah, dirimu pasti merasa terhempas ketika diterpa gelombang laut… gurumuda termasuk anak pantai, sehingga sering merasakan hempasan gelombang ketika mandi di laut. Mengapa tubuh kita terhempas ketika diterpa gelombang laut ? Apabila dirimu tinggal di kota dan sering mandi di kolam renang, coba lakukan percobaan berikut. Guncangkan tangan anda di dalam air kolam sampai air kolam tersebut bergelombang. Ketika air kolam menjadi bergelombang, apakah dirimu merasakan dorongan yang ditimbulkan air tersebut ? walaupun efeknya kecil, gurumuda yakin anda pasti merasakan dorongan air kolam… bagi yang alergi air alias tidak pernah mandi di laut atau kolam renang, coba lakukan percobaan berikut… cari sebuah tali yang agak panjang… jika anda tidak punya koleksi tali, silahkan pinjam di toko terdekat :) minta bantuan seorang teman untuk menggerakan salah satu ujung tali naik turun, sehingga tali tersebut bergelombang… nah, dirimu berdiri di ujung tali yang lain. Usahakan agar anda berdiri tepat pada ujung tali (talinya jangan dipegang, dibiarkan saja di lantai atau tanah). Ketika temanmu menggerakan tali dengan kuat, pasti akan terasa sakit jika salah satu ujung tali mengenai tubuh anda… mengapa demikian ? penjelasan panjang lebar ini hanya mau menunjukkan kepada anda bahwa setiap gelombang selalu membawa energi dari satu tempat ke tempat yang lain. Ketika mandi di laut, tubuh kita terhempas ketika diterpa gelombang laut karena terdapat energi pada gelombang laut. Energi yang terdapat pada gelombang laut bisa bersumber dari angin dkk. Ketika anda mengguncangkan tangan di dalam air kolam, sebenarnya anda sedang memindahkan energi pada air. Demikian juga ketika teman anda menggerakan tali, pada saat itu juga terjadi perpindahan energi dari tangan ke tali, yang kemudian membawanya sepanjang tali tersebut. Sakit yang dirasakan ketika salah satu ujung tali mengenai tubuh anda, disebabkan karena energi pada tali dipindahkan pada bagian tubuh yang bersentuhan dengan tali.

JENIS-JENIS GELOMBANG

Pada penjelasan di atas, gurumuda telah menyebutkan beberapa contoh gelombang yang kita temui dalam kehidupan sehari-hari. Itu baru beberapa contoh… masih banyak contoh lain yang belum disebutkan. Walaupun terdapat banyak contoh gelombang dalam kehidupan kita, secara umum hanya terdapat dua jenis gelombang saja, yakni gelombang mekanik dan gelombang elektromagnetik. Pembagian jenis gelombang ini didasarkan pada medium perambatan gelombang.

Gelombang Mekanik

Gelombang mekanik merupakan gelombang yang membutuhkan medium untuk berpindah tempat. Gelombang laut, gelombang tali atau gelombang bunyi termasuk dalam gelombang mekanik. Kita dapat menyaksikan gulungan gelombang laut karena gelombang menggunakan laut sebagai perantara. Kita bisa mendengarkan musik karena gelombang bunyi merambat melalui udara hingga sampai ke telinga kita. Tanpa udara kita tidak akan mendengarkan bunyi. Dalam hal ini udara berperan sebagai medium perambatan bagi gelombang bunyi.

Gelombang mekanik terdiri dari dua jenis, yakni gelombang transversal (transverse wave) dan gelombang longitudinal (longitudinal wave). Silahkan nonton video di bawah…

Gelombang Transversal

Suatu gelombang dapat dikelompokkan menjadi gelombang trasnversal jika partikel-partikel mediumnya bergetar ke atas dan ke bawah dalam arah tegak lurus terhadap gerak gelombang. Contoh gelombang transversal adalah gelombang tali. Ketika kita menggerakan tali naik turun, tampak bahwa tali bergerak naik turun dalam arah tegak lurus dengan arah gerak gelombang. Bentuk gelombang transversal tampak seperti gambar di bawah.

Berdasarkan gambar di atas, tampak bahwa gelombang merambat ke kanan pada bidang horisontal, sedangkan arah getaran naik-turun pada bidang vertikal. Garis putus-putus yang digambarkan di tengah sepanjang arah rambat gelombang menyatakan posisi setimbang medium (misalnya tali atau air). Titik tertinggi gelombang disebut puncak sedangkan titik terendah disebut lembah. Amplitudo adalah ketinggian maksimum puncak atau kedalaman maksimum lembah, diukur dari posisi setimbang. Jarak dari dua titik yang sama dan berurutan pada gelombang disebut panjang gelombang (disebut lambda – huruf yunani). Panjang gelombang juga bisa juga dianggap sebagai jarak dari puncak ke puncak atau jarak dari lembah ke lembah.

Gelombang Longitudinal

Selain gelombang transversal, terdapat juga gelombang longitudinal. Jika pada gelombang transversal arah getaran medium tegak lurus arah rambatan, maka pada gelombang longitudinal, arah getaran medium sejajar dengan arah rambat gelombang. Jika dirimu bingung dengan penjelasan ini, bayangkanlah getaran sebuah pegas. Perhatikan gambar di bawah…

Pada gambar di atas tampak bahwa arah getaran sejajar dengan arah rambatan gelombang. Serangkaian rapatan dan regangan merambat sepanjang pegas. Rapatan merupakan daerah di mana kumparan pegas saling mendekat, sedangkan regangan merupakan daerah di mana kumparan pegas saling menjahui. Jika gelombang tranversal memiliki pola berupa puncak dan lembah, maka gelombang longitudinal terdiri dari pola rapatan dan regangan. Panjang gelombang adalah jarak antara rapatan yang berurutan atau regangan yang berurutan. Yang dimaksudkan di sini adalah jarak dari dua titik yang sama dan berurutan pada rapatan atau regangan (lihat contoh pada gambar di atas).

Salah satu contoh gelombang logitudinal adalah gelombang suara di udara. Udara sebagai medium perambatan gelombang suara, merapat dan meregang sepanjang arah rambat gelombang udara. Berbeda dengan gelombang air atau gelombang tali, gelombang bunyi tidak bisa kita lihat menggunakan mata. Dirimu suka denger musik khan ? nah, coba sentuh loudspeaker ketika dirimu sedang memutar lagu. Semakin besar volume lagu yang diputar, semakin keras loudspeaker bergetar. Kalau diperhatikan secara seksama, loudspeaker tersebut bergetar maju mundur. Dalam hal ini loudspeaker berfungsi sebagai sumber gelombang bunyi dan memancarkan gelombang bunyi (gelombang longitudinal) melalui medium udara. Mengenai gelombang bunyi selengkapnya akan dipelajari pada pokok bahasan tersendiri.

Pada pembahasan di atas, sudah gurumuda jelaskan bahwa gelombang tali merupakan contoh gelombang transversal, sedangkan contoh gelombang longitudinal adalah gelombang bunyi. Lalu bagaimana dengan gelombang air ? gelombang air bukan sepenuhnya gelombang transversal atau gelombang longitudinal. Gelombang air merupakan gabungan antara gelombang transversal dan gelombang longitudinal.

Dari penjelasan panjang lebar dan bertele-tele sebelumnya ;) , kita bisa menyimpulkan beberapa hal penting berkaitan dengan gelombang mekanik :

Pertama, gelombang merupakan getaran yang merambat dengan laju tertentu melalui medium tertentu. Medium yang dimaksudkan di sini bisa berupa tali, air, pegas, tanah dan sebagainya. Laju getaran yang merambat dikenal dengan julukan laju perambatan alias laju gelombang (v). Laju gelombang ditentukan oleh sifat-sifat medium yang dilalui oleh gelombang. Btw, jangan kacaukan laju gelombang dengan laju medium yang dilalui oleh gelombang.

Kedua, medium yang dilalui oleh gelombang hanya bergerak bolak balik pada posisi setimbangnya, medium tidak merambat seperti gelombang.

Ketiga, gelombang bisa terjadi jika suatu medium bergetar atau berosilasi. Suatu medium bisa bergetar atau berosilasi jika dilakukan usaha alias kerja pada medium tersebut. Dalam hal ini, ketika usaha atau kerja dilakukan pada suatu medium maka energi dipindahkan pada medium tersebut. Nah, ketika getaran merambat (getaran yang merambat disebut gelombang), energi dipindahkan dari suatu tempat ke tempat lain melalui medium tersebut. Gelombang tidak memindahkan materi atau medium yang dilaluinya, gelombang hanya memindahkan energi… perhatikan bahwa pembahasan kita sebelumnya berkaitan dengan gelombang mekanik. Karenanya jika disebutkan gelombang maka yang saya maksudkan adalah gelombang mekanik.

Gelombang Elektromagnet

Sebelumnya kita sudah mengobok2 gelombang mekanik. Nah, kalau gelombang mekanik membutuhkan medium untuk berpindah tempat alias bergentayangan dari satu tempat ke tempat lain, bagaimana dengan gelombang elektromagnet ? Untuk bergentanyangan dari satu tempat ke tempat lain, gelombang elektromagnet tidak membutuhkan medium… kok bisa ? yupz… mengenai gelombang elektromagnetik selengkapnya kita obok2 pada pembahasan mengenai gelombang elektromagnet.

Sebelumnya kita sudah mengelompokkan gelombang berdasarkan medium perambatan. Btw, gelombang juga bisa dikelompokkan berdasarkan banyaknya dimensi yang dilalui gelombang ketika bergentanyangan dari suatu tempat ke tempat lain. Berdasarkan banyaknya dimensi, gelombang bisa dikelompokkan menjadi gelombang berdimensi satu, gelombang berdimensi dua, gelombang berdimensi tiga. Gelombang tali dan gelombang pegas merupakan contoh gelombang berdimensi satu… riak air termasuk gelombang berdimensi dua. Sebaliknya gelombang bunyi dan gelombang elektromagnetik termasuk gelombang berdimensi tiga…

Kamis, 10 Februari 2011

MEMBERSIHKAN WORM SASSER PD WINDOWS XP

Membersihkan Worm Sasser pada Windows XP

Jika anda memakai Microsoft® Windows® XP atau Windows XP Service Pack 1 (SP1) dan komputer anda telah terinfeksi Worm Sasser, anda dapat mengikuti langkah berikut ini untuk mengganti perangkat lunak anda, menghilangkan wormnya, dan memberikan perlindungan dari serangan berikutnya.

Langkah 1: Putuskan sambungan komputer anda ke Internet
Untuk mencegah masalah selanjutnya, pustuskan sambungan komputer anda dari Internet:

Bagi Penguuna Sambungan Internet Broadband Cari kabel yang menghubungkan komputer ke modem eksternal DSL atau kabel yang menghubungkan komputer ke modem atau ke sambungan telepon.Cabutlah kabel itu dari modem atau dari sambungan telepon, sehingga sambungan komputer anda ke Internet terputus.
Dial-up connection users: Carilah kabel yang menghubungkan modem internal dalam komputer anda ke sambungan telepon, kemudian cabutlah kabel itu agar tidak menghubungkan komputer anda ke Internet.
Langkah 2: Hentikan Siklus Shutdown
Worm ini akan menyebabkan file LSASS.EXE tidak bereaksi atas perintah lainnya (stop responding), yang kemudian menyebabkan sistem operasi kembali shut down setelah 60 detik. Jika komputer anda mulai shut down, ikutilah langkah berikut ini agar system tidak mengalami shutdown.

Pada taskbar dibawah layar komputer anda, click Start, lalu click Run.
Ketikan: cmd dan kemudian click OK.
Pada promt, ketikan : shutdown.exe -a kemudian tekan tombol ENTER.
Langkah 3: Lakukan Pencegahan
Anda bisa secara periodik membuang semua tanda tanda adanya worm menginfeksi komputer anda dengan cara membuat sebuah file log.

Membuat file log

Pada taskbar dibawah layar monitor anda, click Start, kemudian click Run.
Ketikan: cmd kemudian click OK.
Pada prompt, ketikan: echo dcpromo >%systemroot%\debug\dcpromo.log dan tekan ENTER.
Membuat file log berstatus read-only

Pada prompt, ketikan: attrib +R %systemroot%\debug\dcpromo.log lalu tekan tombol ENTER.
Langkah 4: Ubahlah Performansi Sistem
Jika komputer anda memberikan tanda adanya sambungan Internet yang lambat, worm mungkin sedang masuk ke jaringan komputer anda. Sehingga mengakibatkan anda sulit melakukan download dan menginstalasi perangkat lunak upodate nya.Untuk mengubah performansi sistem anda lakukan :

Tekan CTRL+ALT+DELETE, kemudian click Task Manager.
Untuk setiap langkah berikut ini yang mungkin ada dalam daftarnya, click task untuk memilihnya, kemudian click End Task button untuk mengakhirinya.
Setiap task berakhir dengan _up.exe (contoh , 12345_up.exe).
Setiap task dimulai dengan avserve (contoh, avserve.exe).
Setiap task dimulai dengan avserve2 (contoh, avserve2.exe).
Setiap task dimulai dengan skynetave (contoh, skynetave.exe).
hkey.exe
msiwin84.exe
wmiprvsw.exe

Perhatian Jangan mengakhiri task wmiprvse.exe; sebab ini merupakan task sistem yang sedang dipakai.

Langkah 5: Enable Firewall
Sebuah firewall adalah sebagian perangkat lunak ataupun perangkat keras yang dibuat untuk tameng penghalang antara komputer anda dan Internet. Jika komputer anda terinfeksi, sebuah firewall akan menolong memperkecil efek dari worm. Windows XP dilengkapi dengan Internet Connection Firewall (ICF). Operaikan ICF:

Pada taskbar dibawah layar monitor anda, click Start, kemudian click Control Panel.
Click kategori Network and Internet Connections.
(Jika Network and Internet Connections adalah not visible, click Switch to Category View dalam Control Panel bagian sisi kiri window Control Panel.)
Click Network Connections.
Click tombol kanan mouse anda pada Dial-up, LAN, atau pada sambungan High-Speed Internet yang adan pergunakan untuk akses ke Internet, lalu click Properties dari menu shortcut.
Pada tab Advanced, pada Internet Connection Firewall, pilih Protect my computer and network, kemudian click OK. Windows XP firewall sudah enable sekarang.
Langkah 6: Sambungkan Kembali ke Internet
Hubungkan kabel seperti yang disebutkan pada langkah 1, ke bagian belakang komputer anda, ke sambungan telepon atau kemodem.

Langkah 7: Installasi File Update Yang Diperlukan
Untuk menolong perlindungan komputer anda melawan worm di waktu mendatang, anda harus mendownload dan menginstalasi file update security 835732, yang telah diumumkan dalam Microsoft Security Bulletin MS04-011. Untuk mendownload update security 835732, carilah disitus http://go.microsoft.com/?LinkID=526067

Langkah 8: Pengecekan dan Pembersih Sasser
Setelah anda menginstalasi file update security pada komputer anda dan melakukan restart komputer anda, akseslah halaman web "What You Should Know About the Sasser Worm and Its Variants" di situs http://www.microsoft.com/security/incident/sasser.asp. Pakailah perangkat lunak pembersih worm Sasser agar hardisk anda bisa discan dan dibersihkan dari Sasser.A, Sasser.B, Sasser.C, dan Sasser.D.

Tentang Internet Connection Firewall
Windows XP Internet Connection Firewall dapat memblokir task berguna seperti file sharing atau printer melalui jaringan komputer, pengiriman file atau penyimpanan game multiplayer. Microsoft menyarankan agar anda memakai firewall untuk perlindungan komputer anda.

Jika anda mengoperasikan Internet Connection Firewall dan menemui masalah dimana atas task yang anda inginkan, bacalah "How to Open Ports in the Windows XP Internet Connection Firewall" dalam situs http://www.microsoft.com/security/protect/ports.asp.

Jika anda memiliki lebih dari satu komputer, dan ingin informasi teknis lebih lanjut, atau ingin belajar lebih lanjut tentang firewall, bacalah "Frequently Asked Questions About Firewalls" dalam situs http://www.microsoft.com/security/protect/firewall.asp.

Senin, 07 Februari 2011

cara rubah blogspot jadi co.cc

Cara membuat Account Blogger menjadi co.cc

Bisakah account blogger saya menjadi lebih profesional dengan memiliki domain seperti website kebanyakan? Contoh, blog ini. Aslinya, account ini adalah all4free-mjs.blogspot.com, namun menjadi www.doncorleone.co.cc.

Bagaimana caranya? Ikuti langkah-langkah berikut.

1. Masuk ke www.co.cc. Kalau belum daftar, Klik di sini, dan ikuti langkah-langkah setting domain seperti yang sudah dijelaskan di postingan sebelumnya.

2. Setelah login, masuk ke menu Manage DNS. Lalu klik Zone records. Di kolom host, ketikkan nama domain anda, misalnya www.antivirupdate.co.cc. Sedang di kolom value ketikkan vhs.google.com, lalu klik save.



3. Setelah itu, buka window baru, dan masuk ke control panel blog anda. Buka halaman 'Setting', masuk ke Publishing.

4. Klik 'switch to custom domain'.



5. Di bagian 'advanced setting', ketikkan nama domain yang ingin anda pakai, lalu klik Save Settings.



6. Sekarang, coba ketikkan nama domain baru anda dan lihat tampilannya. Bisa kan!!

Rabu, 02 Februari 2011

TIPS SEPUTAR BLOG

Tips Blog Ter-Index Mesin Pencari

Buat kamu - kamu yang punya blog baru, kali ini saya berbagi sedikit Tips Blog Ter-Index Mesin Pencari. Agar blog kita bisa muncul di search engine, apa lagi munculnya dihalaman depan dan bagian atas, merupakan keinginan hampir semua bloger. Namun tidaklah mudah untuk membuat blog kita nangkring di top rank result search engine. Ada banyak cara yang dilakukan supaya hal tersebut terwujud, mulai dari yang otak-atik script dan meta tag sampai membayar jasa SEO Service. Berikut ini hal yang mempengaruhi kenapa blog kita bisa nangkring di urutan atas hasil pencarian search engine.

1. Coba ketikkan alamat URL (http://www.namablogkamu.blogspot.com) blog kamu di google search kemudian tekan Enter. Jika blogmu muncul berarti sudah ter - index di google tapi mungkin masih kalah bersaing dengan yang lain. Dan jika blogmu tidak muncul berarti belum ter - index di google. Coba daftarkan blog kamu di http://google.com/addurl. Hasil tidak langsung jadi lho, jadi perlu waktu supaya blog kita terindex oleh google.

2. Title Blog.
Jika membuat blog tentunya kita disuruh untuk membuat title blog. Title blog ini sangat penting dan sangat berpengaruh terhadap hasil pencarian di search engine, jadi pintar-pintarlah untuk memilih title blog kamu. Buatlah title blog yang menggambarkan isi dari blog kamu. Jangan terlalu panjang dan jangan terlalu pendek.

3. Title Postingan.
Title postingan ini juga hampir sama pentingnya dengan title blog. Dalam membuat title postingan atau judul postingan hendaknya dipikirkan betul, bayangkan kira - kira judul apa yang paling cocok untuk postinganmu. Juga bayangkan kira - kira jika kamu mencari artikel tentang postingan mu tersebut, keyword apa yang akan kamu ketikkan di dalam search engine.

4. Update Blog.
Sering-seringlah mengupdate blog setidaknya dalam satu minggu itu sekali ato dua kali.

5. Promosikan blogmu.
Promosikan blogmu ke banyak web/blog, forum, situs promosi gratis, dll. Karena semakin banyak link blogmu tersebar maka akan semakin sering pula spider searh engine mengunjungi blogmu.

6. Ping ke Web Directory Search Engine
Untuk lebih mempercepat ter-index di Google lakukan juga "pinging" ke Web Directory Mesin Pencari, caranya klik disini.

Tips-tips tersebut tidak menjamin blogmu akan langsung terangkat di hasil pencarian search engine, karena metode sebenarnya dari pencarian itu yang mengetahui hanyalah dari pemilik search engine itu sendiri. Tapi setidaknya dengan mengikuti tips diatas blog kamu bisa masuk kedalam hasil pencarian search engine walaupun mungkin berada di urutan keberapa. Semoga bermanfaat.

SEJARAH PROCESOR PENTIUM

Sejarah Prosesor Pentium

Kita telah mengenal kata Pentium dalam dunia komputer hampir satu dasawarsa ini. Nama prosesor yang telah menjadi ujung tombak Intel dalam menguasai pasar prosesor PC desktop dunia ini lebih dikenal daripada arti asli dari kata Pentium yang memang dalam arti Yunani berarti 5 ( lima ) ini, memang Intel memilih nama ini karena prosesor Pentium pada awalnya merupakan prosesor Intel generasi ke lima. Lucu mungkin kalau dipikir bahwa Pentium 4, prosesor 32-bit terbaru Intel, masih menyandang nama Pentium yang arti namanya menunjukkan kalau prosesor ini masih merupakan prosesor generasi ke lima. Padahal kalau kita melihat perubahan arsitektur dalam prosesor terbaru Intel ini, mungkin lebih tepatnya merupakan generasi ke tujuh. Mungkin mestinya Septium or something like that lah, ya kan ? hehe... Yah meski alasan itu sepertinya kurang tepat, Intel memiliki alasan lain kenapa Pentium masih menjadi nama handalan lini produk prosesor Intel, karena nama Pentium telah menjadi brand-name prosesornya, orang-orang hanya tahu Pentium dan hanya Pentium, mungkin ditakutkan kalau Intel memakai nama-nama aneh lagi, orang akan menjadi bingung. Hmm... alasan yang baik juga... Dalam artikel ini saya ingin menceritakan kepada anda para pembaca budiman, sejarah Pentium dari awal sampai generasi terakhir Pentium. Semoga artikel ini dapat menambah wawasan komputer anda serta memberikan gambaran tentang perkembangan prosesor ini dari segi arsitekturnya. Saya sadar kalau mungkin beberapa bagian dari artikel saya ini mungkin salah atau melenceng dari kebenaran, oleh karena itu saya menghargai setiap kritik anda yang dapat ditulis ke e-mail saya di sini . ( tr3nd@telkom.net)
The story begins here.....
PentiumDiluncurkan sekitar awal tahun ’90-an, tahun 1993 tepatnya, Pentium merupakan lompatan besar dalam sejarah prosesor X86 dimana arsitektur prosesor 32-bit mengalami perubahan yang sangat besar. Hal ini menyebabkan kecepatan Pentium ( 80586 atau singkatnya 586 ) secara clock-for-clock dengan prosesor 486 ( generasi sebelumnya ) jauh lebih cepat.
Dimulai dengan kecepatan 60 Mhz sampai 233 Mhz, prosesor ini telah membuat revolusi baru dalam dunia PC. Pada versi awalnya ( Pentium 60 Mhz ) prosesor ini pernah membuat heboh di kalangan dunia PC karena menurut seorang profesor, prosesor ini telah melakukan kesalahan perhitungan jika dilakukan kombinasi perhitungan perkalian dan pengakaran. Hal ini diakui oleh Intel yang lalu menarik kembali seluruh prosesor Pentium 60 Mhz sekaligus menghapus armada prosesor 60 dan 66 Mhz yang lalu diganti dengan Pentium 75 Mhz.
Di Indonesia, entah di negara lain, penulis mengamati kalau prosesor Pentium yang paling banyak dipakai adalah prosesor Pentium 133 Mhz, mungkin anda pembaca pernah memilikinya ?
Intel membuat chipset Pentium ini mulai dari FX, HX, VX sampai yang mampu mendukung Pentium versi akhir dengan MMX, chipset TX , bentuk pengepakan prosesornya adalah Socket-7.
Pentium mengalami sedikit perubahan arsitektur seiring dengan perkembangan teknologi dengan diperkenalkannya instruksi multimedia baru yang disebut MMX pada tahun 1994. Meskipun digemborkan oleh Intel kalau prosesor dengan kemampuan ini dapat meningkatkan pengalaman multimedia ( multimedia experience ) sampai 30-50%, tetapi pada kenyataannya kumpulan instruksi ini banyak tidak terpakai oleh para programmer multimedia ( terutama game ). Tetapi instruksi MMX ini merupakan cikal bakal dari instruksi SIMD ( Single Instruction Multiple Data ) yang sejak itu mulai dikembangkan. Instruksi 3DNow! Dari AMD sebagai contoh merupakan penyempurnaan dari instruksi MMX, demikian pula ISSE ( Internet Streaming SIMD Extension ) milik Intel sendiri.
Pentium Pro
Selama pengembangannya, Intel juga membuat Pentium yang dibuat khusus untuk komputer performa tinggi, seperti server, yaitu Pentium Pro. Untuk pertama kalinya Intel menyatukan L2-cache kedalam prosesornya. Tidak banyak Pentium Pro yang beredar, itu dikarenakan oleh sangat tingginya harga sebuah prosesornya, bahkan sampai saat ini ! Tidaklah heran jika hanya sedikit speed grades yang tersedia untuk Pentium Pro, antara 200 Mhz s/d 233 Mhz. Jika anda iseng-iseng mencari prosesor tipe ini, anda akan tercengang melihat harganya, apalagi jika dibandingkan dengan unsur teknologinya. Meski begitu arsitektur dasar Pentium Pro merupakan fondasi dari pengembangan Pentium II. Kelemahan dari Pentium Pro ini adalah lemahnya kemampuan menjalankan program 16-bit lama, ini dikarenakan memang arsitektur awal prosesor ini diutamakan untuk aplikasi 32-bit. Tidaklah heran jika performa Pentium Pro dibawah atau setara dengan Pentium jika menjalankan aplikasi 16&32-bit seperti Windows9X. Lain ceritanya jika menggunakan prosesor ini pada Windows NT yang desain awalnya sudah benar-benar 32-bit.
Pentium II
Dengan kode sandi pengembangan ‘Klamath’, Pentium II merupakan peningkatan signifikan dari arsitektur lama Pentium. Perubahan pada struktur dan besar cache, penempatan L2-cache, serta yang mencolok cara pengepakan prosesor yang baru, PPGA ( Plastic Pin Grid Array ) yang oleh Intel dulu dianggap dapat menekan biaya produksi prosesornya. Perubahan bentuk pengepakan prosesor ini membuat para pembuat motherboard terpaksa merubah rumah prosesor dari Socket ke slot, bernama Slot-1. Dengan cara ini, prosesor ditancapkan ke slot yang tersedia, mirip dengan menancap kartu ekspansi. Chipset awal Intel ( dan masih merupakan chipset terbaik sejauh ini ) untuk Pentium II adalah i440BX untuk PC standar, serta i440LX untuk budget PC.
Penempatan cache L2 didalam prosesor tetapi bukan diintinya juga merupakan perbedaan utama PII dengan Pentium. Kalau dulu cache ditaruh di motherboard, kali ini Intel menaruh cachenya di papan sirkuit prosesornya. Hal ini dapat meningkatkan kinerja prosesor karena cachenya bekerja pada ½ clock prosesor, jadi jika prosesornya bekerja pada 350 Mhz, cachenya berarti bekerja pada 175 Mhz. Ini merupakan peningkatan berarti dari arsitektur lama yang cachenya bekerja pada clock tertentu yang diatur motherboard.Pada Pentium II juga diperbaiki performa 16-bit dari pendahulunya, Pentium Pro. Sehingga dalam menjalankan aplikasi campuran 16 & 32-bit kecepatannya dapat terdongkrak.
Besar inti Pentium II juga lebih kecil, hal ini disebabkan prosesor ini dibuat pada pemrosesan 0.25-micron.
Tingkatan kecepatan Pentium II dimulai dari PII 233 Mhz sampai PII 450 Mhz. Dimana tingkat kecepatan yang paling sering ditemukan adalah antara 300-450 Mhz.
Celeron
Intel melihat pasar yang cukup besar dalam PC yang berharga dibawah $1000, dimana performa tidak terlalu diperhatikan, kasarnya komputer ‘yang penting jalan lah’. Intel memasuki pasar ini dengan meluncurkan prosesor Celeron, sebuah varian dari Pentium II dengan ‘mengkebiri’ beberapa kemampuan PII, pada akhir tahun 1998. Peng-‘kebiri’-an Celeron dapat dilihat dari ketidakhadiran cache L2 serta pembatasan FSB yang kalau PII bisa sampai 100 Mhz, Celeron cuma 66 Mhz. Kedua pembatasan itu dapat menurunkan harga Celeron sampai hampir ½ PII, tentu saja dengan penalti performa yang cukup buruk.
Performa Celeron yang buruk ini sempat dikritik oleh para entusias komputer, terutama karena ketidakhadiran cache L2 yang sangat berpengaruh pada performa prosesor. Oleh karena itu Intel meluncurkan Celeron yang ditambahi L2 cache tetapi cuma 128 KB, lebih kecil dari PII yang cachenya 512 KB, mulai tingkat kecepatan 300 Mhz, sehingga dipasaran ada 2 macam Celeron 300 Mhz, yang dengan cache L2 dan yang tidak memiliki L2 cache. Perbedaannya dapat dilihat dari inisial A dibelakang tingkat kecepatannya, jadi yang dengan cache L2 Celeronnya diberi nama Celeron 300A. Semenjak itu semua Celeron diatas 300 Mhz pasti memiliki 128 KB cache L2. Tetapi kesemuanya itu tidak menjadikan Celeron lebih baik dari PIII sampai versi terakhirnya pun, itu selain dikarenakan FSB-nya yang hanya 66Mhz, juga cache L2-nya yang cuma 4 way set associative, tidak seperti PIII yang 8-way set associative, and that matters much ! Kelihatan seperti prosesor yang dikebiri banget yah ?
Dikarenakan ketidakhadiran atau sedikitnya cache L2, Celeron dianggap prosesor yang paling mudah di overclock. L2 cache mempengaruhi kemampuan overclock prosesor karena begitu prosesor dinaikkan frekuensi clocknya melebihi kemampuannya maka secara otomatis clock pada cache juga terangkat. Jika tidak mempunyai cache maka masalahnya lebih mudah lagi. Penulis pernah mendengar kalau ada Celeron yang mampu di overclock dengan kenaikan sampai 400-450 Mhz, jadi jika ada Celeron 300 Mhz di overclock, maka kenaikannya bisa sampai 700-750 Mhz !! Gile benerrr......
FSB juga merupakan bottleneck yang menghalangi Celeron bersaing dengan kakak-kakaknya. Dengan FSB 66 Mhz, sebuah prosesor Celeron baru dapat menyaingi PII jika kecepatannya lebih cepat ¾-nya, dan hal itu cukup mengganggu pula, saya kira ini merupakan strategi Intel untuk menghindari Celeron untuk bersaing langsung dengan armada prosesor cepat lain milik Intel sendiri.
Satu hal yang perlu dicatat, Celeron merupakan prosesor pertama Intel yang menggunakan Socket 370, sehingga bentuk prosesornya balik ke seperti dahulu lagi, berbentuk bujur sangkar dan mempunyai kaki banyak ( dalam hal ini 370 pin ) dibawahnya. Hal ini dilanjutkan terus sampai sekarang, mungkin menandai awalnya kematian Slot-1... Peletakan inti Celeron Socket ini juga model baru, namanya FC-PGA ( Flip-Chip Pin Grid Array ) dimana inti prosesor diletakkan pada permukaan atas prosesor, sehingga dapat melepas panas lebih baik.
Celeron versi akhir, Celeron II, berisi arsitektur yang lebih baik lagi dari kakaknya, karena arsitekturnya berdasar pada PIII serta telah memiliki ISSE yang dulu hanya dimiliki oleh PIII. Serta mempunyai bentuk bukan slot lagi tapi balik ke Socket seperti Pentium lama. Dan juga Celeron II telah diproduksi pada 0.18-micron. Tetapi dalam waktu dekat kabarnya Intel berencana membuat Celeron II dengan FSB 100Mhz, dan itu merupakan kabar yang baik.
Pentium III ( Merced )
Dengan kode sandi pengembangan Merced, Pentium III dibuat untuk memperbaiki kelemahan-kelemahan yang ada di Pentium II dan menurut penulis pribadi juga merupakan jawaban Intel dari prosesor K6-2 AMD yang memiliki instruksi khusus 3Dnow!, semenjak PII tidak memiliki instruksi-instruksi khusus seperti itu, kecuali MMX milik Intel sendiri. Di prosesor PIII yang masih diproduksi pada 0.25-micron ini, telah dilakukan perubahan yang cukup mendasar. Hal yang berubah pada PIII adalah hadirnya instruksi-instruksi ISSE milik Intel yang merupakan pengembangan dari MMX itu sendiri.
Prosesor ini menggunakan L2 cache yang masih diluar inti prosesor, meski pada tahap ini Intel sudah mulai menyadari kalau arsitektur cache ini tidaklah membantu kinerja prosesor serta teknologinya sudah dapat menyatukan, demi menjaga kompabilitas pada slot, Intel terpaksa membuat prosesor ini masih dalam bentuk slot.
Pentium III ( Coppermine )
Diluncurkan pada awal tahun 2000, prosesor generasi ke-2 dari PIII ini memperbaiki hampir semua kekurangan PIII generasi awal, sekalian juga memperkenalkan untuk pertama kalinya teknologi FC-PGA terbaru Intel dalam pembuatan prosesornya dan tentu saja sudah diproses pada 0.18-micron. Juga diperkenalkan FSB 133 Mhz sehingga dapat mendongkrak kinerja prosesor. Pada Meski sebagian besar prosesornya berbentuk Socket lagi, tapi untuk beberapa speed grades masih mempertahankan bentuk Slot-1-nya untuk kompabilitas motherboard-motherboard lama.
Model Pentium III ini memiliki banyak model sampai mungkin dapat membingungkan. Terutama yang memiliki speed grades 600Mhz keatas, misalnya pada speed grade 600 Mhz ada yang 600, 600E, 600EB, ada juga yang 600B. Inisial E menunjukkan kalau FSB PIII 600Mhz itu sudah 133 Mhz, kalau inisial B-nya menunjukkan kalau bentuknya sudah FC-PGA ( PIII berbentuk Socket 370 ). Cukup memusingkan bukan untuk satu model prosesor saja ? Tetapi untuk yang diatas 800 Mhz, kebanyakan atau mungkin seluruh prosesornya pasti sudah memiliki bus FSB 133 Mhz dan sudah berbentuk Socket FC-PGA.
Pengembangan terbaru PIII generari kedua ini adalah dari sistem manajemen cachenya yang baru, disebut ATC atau Advanced Transfer Cache, yang memampukan cache yang terpasang pada PIII ini dapat mengawasi data apa yang paling sering dipakai pada aktifitas proses tertentu. Juga ditambahkan sekitar 20-30-an instruksi-instruksi multimedia baru yang oleh Intel disebut ISSE II.
PIII Coppemine berhasil menembus batas 1 Ghz dalam perlombaan Ghz yang telah ‘diadakan’ sekitar kuartal kedua tahun ini. Meski kalah dengan AMD yang telah mencapai 1 Ghz terlebih dahulu, Intel tampaknya telah banyak melakukan perubahan sana-sini agar prosesornya dapat ‘dipaksa’ untuk mencapai 1 Ghz. Prosesor PIII tertinggi saat penulisan artikel ini sudah mencapai 1.13 Ghz.
Pentium III ( Tualatin )
Pentium III generasi ke-3 ini dikabarkan tlah diluncurkan pada kuartal ke-1 atau 2 tahun 2001, selain akan memiliki clock yang lebih tinggi juga akan dibuat pada pemrosesan terbaru milik Intel, 0.13-micron. Satu hal yang menarik dari PIII Tualatin adalah prosesor ini mendukung penggunaan bus 200 Mhz, meski tetap mempertahankan bentuk Socket-370-nya. Tentunya ini membuat motherboard lama tidak akan dapat mendukung PIII Tualatin. Kabarnya Intel tidak akan langsung menggunakan kemampuan 200 Mhz PIII baru ini untuk menghindari persaingan langsung dengan saudaranya, Pentium 4. PIII baru ini juga akan mendukung baik SDRAM maupun DDR SDRAM. dan menurut konon critanya pentium !!! yang baru tidak dikluarkan lagi.
Pentium 4 ( Willamette )
Prosesor termutakhir dari keluarga Pentium adalah Pentium 4 (P4), yang proyeknya telah dimulai Intel sejak 1-2 tahun lalu. Dengan 1.4 Ghz sebagai speed grades terkecil untuk P4 ini membuat P4 menjadi prosesor 32-bit tercepat saat ini. Dibuat pada pemrosesan 0.18-micron untuk versi-versi awalnya, P4 akan secara bertahap berpindah ke 0.13-micron seiring dengan pertambahan clocknya. Diperkirakan P4 akan mampu dibuat sampai kisaran 2 Ghz.
Dengan menggunakan chipset baru berkode ‘Tehama’, prosesor ini pada rencananya akam menggunakan Rambus sebagai interface memory-nya, hal ini dikarenakan arsitektur prosesor ini lebih dioptimisasikan pada arsitektur Rambus. Penggunaan Rambus sebagai memory membuat mahalnya sebuah system yang menggunakan P4 ini, sekeping RIMM yang besarnya 64MB, harganya bisa mencapai $400-an, coba dibandingkan dengan DIMM SDRAM biasa yang harganya cuma $70-an, beda sekali bukan ? Tetapi jika melihat perfoma yang didapat, tampaknya mungkin harga semahal itu masuk akal bukan ?
Perubahan arsitektur ini juga membuat ukuran inti P4 menjadi lebih besar, sekitar 200-an mm2 , bandingkan dengan inti PIII yang cuma 150-an mm2 . Hal ini membuat prosesor P4 membutuhkan heatsink yang lebih besar dan frame pendingin yang lebih kuat juga. Belum lagi karena bentuknya yang ‘baru’ ini membuat para desainer casing harus membuat casing model baru lagi yang dapat merumahkan P4, standard ini telah disiapkan Intel dengan nama ATX 2.0. Jadi yang harapan untuk dapat mengupgrade PIII-nya ke P4 dapat anda buang saja, cukup disayangkan sekali ! Tetapi itulah resiko dari perkembangan teknologi. Hal ini menunjukkan kalau P4 memang investasi yang cukup mahal, tidaklah heran jika P4 untuk sementara hanya ditujukan untuk kalangan server saja, belum untuk desktop, tetapi ada pula rencana kearah situ.
Mengenai detil P4 dapat anda baca pada berita-berita seiring dengan makin terbukanya informasi mengenai P4.
Pentium V (?)
Sejauh ini masih merupakan rumor kalau Intel akan mengembangkan Pentium V, mungkin Pentium V merupakan generasi terakhir Pentium dan sekaligus generasi terakhir prosesor 32-bit Intel. Tidak banyak info yang didapat sejauh ini.
Demikianlah artikel saya tentang sejarah dan perkembangan Intel Pentium serta varian-variannya, semoga informasi ini dapat meningkatkan pengetahuan anda tentang komputer terutama dibidang prosesor.